martes, 10 de mayo de 2011

neutralizacion y PH

una reacción de neutralización es una reacción entre un ácido y una base. Cuando en la reacción participan un ácido fuerte y una base fuerte se obtiene una sal y agua. Mientras que si una de las especies es de naturaleza débil se obtiene su respectiva especie conjugada y agua. Así pues, se puede decir que la neutralización es la combinación de cationes hidrógeno y de aniones hidróxido para formar moléculas de agua. Durante este proceso se forma una sal.

Las reacciones de neutralización son generalmente exotérmicas, lo que significa que desprenden energía en forma de calor.

Generalmente la siguiente reacción ocurre:

ácido + base → sal haloidea + agua

Este tipo de reacciones son especialmente útiles como técnicas de análisis cuantitativo. En este caso se puede usar una solución indicadora para conocer el punto en el que se ha alcanzado la neutralización completa. Algunos indicadores son la fenolftaleína (si los elementos a neutralizar son ácido clorhídrico e hidróxido de sodio), azul de safranina, el azul de metileno, etc. Existen también métodos electroquímicos para lograr este propósito como el uso de un pHmetro o la conductimétria.

Ejemplos:

PH SOLUCIONES
Es una unidad de medida aceptada y común como un " metro " es una medida de la longitud, y un "litro" es una medida de volumen fluido El pH es una medida de la acidez o de la alcalinidad de una sustancia . Es necesario porque, dado que en ciertos casos no es suficiente decir que el agua está caliente, o no es suficiente decir en ciertos casos que el jugo del limón es ácido, al saber que su pH es 2,3 nos dice el grado exacto de acidez. Necesitamos ser específicos. Al decir que el agua está en 91° C o 196°F expresamos exactamente lo caliente que está.

Por lo tanto la medición de la acidez y la alcalinidad es importante, pero cómo está el pH relacionado con estas medidas ?

Escala de pH.

Los ácidos y las bases tienen una característica que nos deja poder medirlos , es la concentración de los iones de hidrógeno. Los ácidos fuertes tienen altas concentraciones de iones de hidrógeno y los ácidos débiles tienen concentraciones bajas. el pH entonces es un valor numérico que expresa la concentración de iones de hidrógeno.

Hay centenares de ácidos - ácidos fuertes como el ácido sulfúrico, que puede disolver los clavos de acero y ácidos débiles como el ácido bórico, que es bastante seguro de utilizar como lavado de ojos . Hay también muchas soluciones alcalinas, llamadas " bases " , las soluciones alcalinas suaves como la Leche-De-Magnesia, que calman los trastornos del estómago y las soluciones alcalinas fuertes como la soda cáustica o hidróxido de sodio que puede disolver el cabello humano.

Los valores numéricos verdaderos para estas concentraciones de ion de hidrógeno son típicamente una fracción muy pequeña EJ 1/10.000.000. Debido a que éste es un número incómodo con el que trabajar , una escala única fue ideada. La escala creada utiliza el logaritmo negativo de la concentración del ion de hidrógeno (o actividad) para las soluciones ácidas y básicas. Los valores leídos en esta escala se llaman las medidas del "pH".

Los números a partir del 0 al 7 en la escala indican las soluciones ácidas, y 7 a 14 indican soluciones alcalinas. Cuanto más ácida es una sustancia , más cercano su pH estará a 0; cuanto más alcalina es una sustancia, más cercano su pH estará a 14. Algunas soluciones fotográficas no son ni altamente ácidas ni altamente alcalinas sino que están más cercanas al punto neutro , pH=7 que es el pH de la solucion del agua de canilla . Las soluciones de revelador tienen valores en la porción alcalina de la escala del pH, extendiéndose típicamente de pH 9 a 12. Los baños de parada tienen valores en el extremo opuesto de la escala porque contienen cantidades grandes de ácido; tienen típicamente valores de pH de 1 a 3.

Como se mide el pH.

Una manera simple de determinarse si un material es un ácido o una base es utilizar papel de tornasol . El papel de tornasol es una tira de papel tratada que se vuelve color de rosa cuando está sumergida en una solución ácida, y azul cuando está sumergida en una solución alcalina. Aunque otros papeles de pH pueden ahora proporcionar una estimación más exacta del pH, no son bastante exactos para medir soluciones fotográficas, y no son muy útiles para medir el pH de líquidos coloreados o turbios.

Los papeles tornasol se venden con una gran variedad de escalas de pH. Para medir el pH, seleccione un papel que dé la indicación en la escala aproximada del pH que vaya a medir. Si no conoce la escala aproximada, tendrá que determinarla por ensayo y error, usando papeles que cubran varias escalas de sensibilidad al pH Para medir el pH, sumerja varios segundos en la solución el papel tornasol, que cambiará de color según el pH de la solución. Los papeles tornasol no son adecuados para usarse con todas las soluciones. Las soluciones muy coloreadas o turbias pueden enmascarar el indicador de color. Ciertas soluciones, como los reveladores, pueden requerir mayor precisión que la que ofrecen los papeles tornasol.

El método más exacto y comúnmente más usado para medir el pH es usando un medidor de pH ( o pHmetro ) y un par de electrodos. Un medidor de pH es básicamente un voltímetro muy sensible , los electrodos conectados al mismo generarán una corriente eléctrica cuando se sumergen en soluciones. Un medidor de pH tiene electrodos que producen una corriente eléctrica; ésta varia de acuerdo con la concentración de iones hidrógeno en la solución. La principal herramienta para hacer las mediciones de pH es el electrodo de bombilla de vidrio. Tal vidrio tiene una composición especial, sensible a los iones hidrógeno. Un tipo de voltímetro conectado a los electrodos relaciona con el pH la corriente eléctrica producida en la membrana de vidrio. Para cerrar el circuito y brindar una referencia estable y reproducible, se requiere un segundo electrodo. El medidor debe estar calibrado con una solución de pH conocido, llamada "amortiguador" (también solución tampón o buffer ) Los amortiguadores resisten las variaciones de pH y tienen valores de pH específicos a temperaturas determinadas.

Dos tipos de electrodos se utilizan para medir el pH, y cada electrodo tiene un propósito específico. El electrodo " de cristal " tiene un bulbo hecho de composición de cristal especial que es muy selectivo y sensible a los iones de hidrógeno. Cuando este bulbo de cristal se sumerge en una solución, el voltaje generado en la superficie de los bulbos se relaciona con el pH de la solución. La determinación del pH con el medidor es mucho más precisa que con los papeles tornasol. Sin embargo, debe usted dar mantenimiento y usar correctamente el medidor, así como hacer las mediciones conforme al procedimiento prescrito.

El otro electrodo se llama " electrodo de referencia " y proporciona un voltaje estable y reproducible cuando se sumerge en una solución. Cuando los dos electrodos están conectados con un medidor de pH, la diferencia de voltaje se amplifica y se visualiza en un indicador analógico o digital. Un electrodo que combine el bulbo de cristal sensible al pH y una celda de la referencia en un cuerpo de electrodo se llama " electrodo de combinación " y se utiliza de la misma manera que un par del electrodos.

Para obtener una exactitud y buena consistencia, usted debe estandardizar el pHmetro con soluciones de valores de pH conocidos llamados " búferes " ( o buffer del Inglés ) .Un buffer es una solución especialmente preparada con dos cualidades importantes; resiste cambios en el pH, y tiene un valor de pH específico en una temperatura específica. Para las lecturas exactas y confiables del pH, usted debe también mantener y calibrar el pHmetro y los electrodos a menudo. Usted debe también medir las soluciones en la temperatura correcta y utilizar la técnica apropiada.

MEDIDOR de pH o pHmetro. 

El metro de pH debe ser capaz de calibraciones en dos-puntos con un control ajustable de pendiente o ganancia o una lectura de los valores de la ganancia . Una legibilidad de hasta 0,01 unidades de pH y exactitud de hasta 0,02 unidades se requiere como mínimo .


Electrodos.

Calibre siempre el medidor con amortiguadores precisos. Use amortiguadores próximos al valor de pH de las soluciones que vaya a medir. Revise la pendiente y ajústela de ser necesario, para compensar la antigüedad de los electrodos.Para exactitud creciente, utilice un par separado de electrodos o por lo menos con un electrodo de cristal separado para las medidas altas y bajas del pH. Almacene los electrodos en las soluciones recomendadas.Enjuague y llene los electrodos de referencia con 3,5 M en vez de una solución saturada de cloruro del potasio. La concentración más baja de sal produce menos cristalización dentro de los electrodos y en la junta de referencia. La composición compleja de las soluciones de proceso fotográfico puede producir efectos indeseados sobre las membranas de cristal de los electrodos de pH.



Longitud de enlace
En geometría molecular, la longitud de enlace o distancia de enlace es la distancia media en el tiempo entre los núcleos de dos átomos unidos mediante un enlace químico en unamolécula.

Explicacion

La longitud de enlace se relaciona inversamente con el orden de enlace, y crece con los radios de los átomos que se enlazan. Cuanto mayor es el orden de enlace entre dos átomos determinados, menores serán las longitudes de enlaces que ellos forman.


En cuanto al otro factor, la longitud del enlace es aproximadamente igual a la suma de los radios covalentes de los átomos participantes en ese enlace. Si los átomos que se unen tienen radios grandes,la distancia de enlace también lo será. La longitud de enlace también se relaciona inversamente con la fuerza de enlace y con la energía de disociación de enlace, dado que un enlace más fuerte también es un enlace más corto. En un enlace entre dos átomos idénticos, la mitad de la distancia de enlace es igual al radio covalente. Las longitudes de enlace se miden en las moléculas por medio de la difracción de rayos X. El enlace entre dos átomos es distinto de una molécula a otra. Por ejemplo, el enlace carbono-hidrógeno en elmetano es diferente a aquél en el cloruro de metilo. Sin embargo, es posible hacer generalizaciones cuando la estructura general es la misma.
Longitudes de enlace del carbono con otros elementos
A continuación se muestra una tabla con longitudes de enlace simple entre carbono y otro elemento.[1] Las longitudes de enlace están dadas en picómetros. Por aproximación, las distancias de enlace entre dos átomos diferentes es la suma de los radios covalentesindividuales.


Longitudes de enlace en compuestos orgánicos

La longitud de enlace real entre dos átomos en una molécula depende de factores tales como la hibridación de orbitales y la naturaleza electrónica y estérica de los sustituyentes. La longitud de enlace carbono-carbono en el diamante es de 154 pm, que es la mayor longitud de enlace que existe para los enlaces covalentes ordinarios de carbono.

Excepcionalmente pueden existir longitudes de enlace mayores. En uno, eltriciclobutabenceno, se registró una longitud de enlace de 160 pm. El récord actual lo tiene otro ciclobutabenceno, con 174 pm, basado en difracción de rayos X.2 En este tipo de compuestos, el anillo de ciclobutano forzaría ángulos de enlace de 90° en los átomos de carbono conectados al anillo bencénico donde ellos tienen ángulos de enlace ordinarios de 90°.

La existencia de longitudes de enlace C-C muy largas de hasta 290 pm se propone para el dímero de dos dianiones tetracianoetileno, aunque esto corresponde a un enlace de 2-electrones-4-centros.3 4 Este tipo de enlace también ha sido observado en dímeros delfenaleno neutro. Las longitudes de enlace de estos enlaces pancake5 llegan hasta los 305 pm.

También es posible tener distancias de enlace carbono-carbono más cortas que el promedio, los alquenos y alquinos tienen longitudes de enlace de 133 y 120 pm, respectiamente, debido a un mayor carácter s del enlace sigma. En el benceno, todos los enlaces tienen la misma longitud: 139 pm. En enlaces simples carbono-carbono, hay un notable incremento en el carácter s en el enlace central del diacetileno (137 pm) y el de cierto dímero de tetraedrano(144 pm).

En el propionitrilo, el grupo ciano jala densidad electrónica, resultando en una longitud de enlace reducida (144 pm). La reducción de un enlace CC también es posible por aplicación deimpedimento estérico. El compuesto orgánico In-metilciclofano muestra una distancia de enlace muy corta de 147 pm para el group metilo aplastado entre un grupo tripticeno y un grupo fenilo. En un experimento in silico, se estimó la distancia de enlace para el neopentanoatrapado en fulereno de 136 pm.6 La menor distancia de enlace obtenida para un enlace simple carbono-carbono en este estudio es de 132 pm para una una molécula hipotética similar aladamantano.

Longitudes de enlace en compuestos orgánicos comunes



LEY DE LOS GASES REALES

La ley de los gases reales es la ecuación de estado del gas real, un gas formado por partículas con volumen, con atracción y repulsión entre ellas y cuyos choques no son perfectamente elásticos (no conservan de momento ni la energía cinética), en contraposición a un gas ideal. Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y altatemperatura.

ECUACION DE ESTADO GASES REALES

Haciendo una corrección a la ecuación de estado de un gas ideal, es decir, tomando en cuenta las fuerzas intermoleculares y volúmenes intermoleculares finitos, se obtiene la ecuación para gases reales, también llamada ecuación de Van der Waals:



LEY DE LOS GASES IDELAES
La ley de los gases ideales es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales, sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.
Empíricamente, se observan una serie de relaciones entre la temperatura, la presión y el volumenque dan lugar a la ley de los gases ideales, deducida por primera vez por Émile Clapeyron en 1834.

Gases reales
Si se quiere afinar más o si se quiere medir el comportamiento de algún gas que escapa al comportamiento ideal, habrá que recurrir a las ecuaciones de los gases reales, que son variadas y más complicadas cuanto más precisas.

Los gases reales no se expanden infinitamente, sino que llegaría un momento en el que no ocuparían más volumen. Esto se debe a que entre sus partículas, ya seas átomos como en los gases nobles omoléculas como en el (O2) y la mayoría de los gases, se establecen unas fuerzas bastante pequeñas, debido a los cambios aleatorios de sus cargas electrostáticas, a las que se llama fuerzas de Van der Waals.

El comportamiento de un gas suele concordar más con el comportamiento ideal cuanto más sencilla sea su fórmula química y cuanto menor sea su reactividad ( tendencia a formar enlaces). Así, por ejemplo, los gases nobles al ser moléculas monoatómicas y tener muy baja reactividad, sobre todo el helio, tendrán un comportamiento bastante cercano al ideal. Les seguirán los gases diatómicos, en particular el más liviano hidrógeno. Menos ideales serán los triatómicos, como el dióxido de carbono; el caso delvapor de agua aún es peor, ya que la molécula al ser polar tiende a establecer puentes de hidrógeno, lo que aún reduce más la idealidad. Dentro de los gases orgánicos, el que tendrá un comportamiento más ideal será el metano perdiendo idealidad a medida que se engrosa la cadena de carbono. Así, elbutano es de esperar que tenga un comportamiento ya bastante alejado de la idealidad. Esto es porque cuanto más grande es la partícula constituyente del gas, mayor es la probabilidad de colisión e interacción entre ellas, factor que hace disminuir la idealidad. Algunos de estos gases se pueden aproximar bastante bien mediante las ecuaciones ideales, mientras que en otros casos hará falta recurrir a ecuaciones reales muchas veces deducidas empíricamente a partir del ajuste de parámetros.

También se pierde la idealidad en condiciones extremas, como altas presiones o bajas temperaturas. Por otra parte, la concordancia con la idealidad puede aumentar si trabajamos a bajas presiones o altas temperaturas. También por su estabilidad química.
Comportamiento de los gases

Para el comportamiento térmico de partículas de la materia existen cuatro cantidades medibles que son de gran interés: presión, volumen, temperatura y masa de la muestra del material (o mejor aúncantidad de sustancia, medida en moles).
Cualquier gas se considera como un fluido, porque tiene las propiedades que le permiten comportarse como tal.

Sus moléculas, en continuo movimiento, colisionan elásticamente entre sí y contra las paredes del recipiente que contiene al gas, contra las que ejercen una presión permanente. Si el gas se calienta, esta energía calorífica se invierte en energía cinética de las moléculas, es decir, las moléculas se mueven con mayor velocidad, por lo que el número de choques contra las paredes del recipiente aumenta en número y energía. Como consecuencia la presión del gas aumenta, y si las paredes del recipiente no son rígidas, el volumen del gas aumenta.

Un gas tiende a ser activo químicamente debido a que su superficie molecular es también grande, es decir, al estar sus partículas en continuo movimiento chocando unas con otras, esto hace más fácil el contacto entre una sustancia y otra, aumentando la velocidad de reacción en comparación con los líquidos o los sólidos.

Para entender mejor el comportamiento de un gas, siempre se realizan estudios con respecto al gas ideal, aunque éste en realidad nunca existe y las propiedades de este son:
             Una sustancia gaseosa pura está constituida por moléculas de igual tamaño y masa. Una mezcla de sustancias gaseosas está formada por moléculas diferentes en tamaño y masa.
             Debido a la gran distancia entre unas moléculas y otras y a que se mueven a gran velocidad, las fuerzas de atracción entre las moléculas se consideran despreciables.
             El tamaño de las moléculas del gas es muy pequeño, por lo que el volumen que ocupan las moléculas es despreciable en comparación con el volumen total del recipiente. La densidad de un gas es muy baja.
             Las moléculas de un gas se encuentran en constante movimiento a gran velocidad, por lo que chocan elásticamente de forma continua entre sí y contra las paredes del recipiente que las contiene.

Para explicar el comportamiento de los gases, las nuevas teorías utilizan tanto la estadística como la teoría cuántica, además de experimentar con gases de diferentes propiedades o propiedades límite, como el UF6, que es el gas más pesado conocido.
Un gas no tiene forma ni volumen fijo; se caracteriza por la casi nula cohesión y la gran energía cinética de sus moléculas, las cuales se mueven.

leyes de los gases

LEYES DE LOS GASES
Ley de Boyle-Mariotte
Para una cierta cantidad de gas a temperatura constante, su presión es inversamente proporcional al volumen que ocupa.

Matemáticamente sería:


Ley de Charles
A una presión dada, el volumen ocupado por una cierta cantidad de un gas es directamente proporcional a su temperatura.
Matemáticamente la expresión sería:

o

  
Ejemplo:
Un gas tiene un volumen de 2.5 L a 25 °C. ¿Cuál será su nuevo volumen si bajamos la temperatura a 10 °C?
Recuerda que en estos ejercicios siempre hay que usar la escala Kelvin.
Solución: Primero expresamos la temperatura en kelvin:
T1 = (25 + 273) K= 298 K
T2 = (10 + 273 ) K= 283 K
Ahora sustituimos los datos en la ecuación:
2.5L
V2
-----
=
-----
298 K
283 K
Si despejas V2 obtendrás un valor para el nuevo volumen de 2.37 L.



Ley de Gay-Lussac
La presión de una cierta cantidad de gas, que se mantiene a volumen constante, es directamente proporcional a la temperatura:
   



Es por esto que para poder envasar gas, como gas licuado, primero se ha de enfriarse el volumen de gas deseado, hasta una temperatura característica de cada gas, a fin de poder someterlo a la presión requerida para licuarlo sin que se sobrecaliente, y, eventualmente, explote.
Ejemplo:
Cierto volumen de un gas se encuentra a una presión de 970 mmHg cuando su temperatura es de 25.0°C. ¿A qué temperatura deberá estar para que su presión sea 760 mmHg?
Solución: Primero expresamos la temperatura en kelvin:
T1 = (25 + 273) K= 298 K
Ahora sustituimos los datos en la ecuación:
970 mmHg
760 mmHg
------------
=
------------
298 K
T2
Si despejas T2 obtendrás que la nueva temperatura deberá ser 233.5 K o lo que e

s lo mismo -39.5 °C. 
Ley de Avogadro
A presión y temperatura constantes, el volumen de cualquier gas es directamente proporcional al número de moles del mismo. O alternativamente, volúmenes iguales de gases diferentes, pero a las mismas presión y temperatura, contienen el mismo número de moléculas.
Matemáticamente, la fórmula es:

   

Ejemplo:
Sabemos que 3.50 L de un gas contienen 0.875 mol. Si aumentamos la cantidad de gas hasta 1.40 mol, ¿cuál será el nuevo volumen del gas? (a temperatura y presión constantes)
Solución: Usamos la ecuación de la ley de Avogadro : V1n2 = V2n1
(3.50 L) (1.40 mol) = (V2) (0.875 mol)
Comprueba que si despejamos V2 obtenemos un valor de 5.60 L



Las tres leyes mencionadas pueden combinarse matemáticamente en la llamada ley general de los gases. Su expresión matemática es:

siendo P la presiónV el volumenn el número de molesR la constante universal de los gases idealesy T la temperatura en Kelvin.
El valor de R depende de las unidades que se estén utilizando:
·         R = 0,082 atm·l·K·mol si se trabaja con atmósferas y litros
·         R = 8,31451 J·K·mol si se trabaja en Sistema Internacional de Unidades
·         R = 1,987 cal·K·mol
·         R = 8,31451 10 erg ·K·mol
De esta ley se deduce que un mol de gas ideal ocupa siempre un volumen igual a 22,4 litros a 0 °C y 1atmósfera. Véase también Volumen molar. También se le llama la ecuación de estado de los gases, ya que sólo depende del estado actual en que se encuentre el gas.
Para ver ejemplos sobre cada una de las leyes  visita:
Esta teoría supone que la materia está formada por partículas que pueden moverse, tienen energía cinética e interactúan entre sí, ejerciendo fuerzas atracivas, y tienen energía potencial. Se puede resumir en estos postulados:
1- La materia está formada por pequeñas partículas: átomos, moléculas o iones.
2- Las particulas de una sustancia son todas ellas iguales entre sí y diferentes a las de otra sustancia.
3- En los gases, las partículas están separadas por distancias muy grandes en comparación con su tamaño; en los líquidos las distancias son más cortas y, en los sólidos, son tan ínfimas que solamente se producen movimientos vibratorios.
4- Los gases están constituidos por moléculas que se mueven libremente al azar, colisionando unas con otras mediante choques elásticos.
5- La presión de un gas es consecuencia del choque entre las moléculas y las paredes del recipiente. La presión se incrementa al aumentar el número de choques.
6- Las fuerzas interactivas entre las partículas son prácticamente nulas en los gases, pequeñas y variables en los líquidos y grandes e intensas en los sólidos.
7- La energía cinética media de las partículas es directamente proporcional a la temperatura absoluta. E.sub.c=3/2·k·T   en donde  k  es la constante de Boltzman.
Así, en el cero absoluto 0 K, la energía cinética es 0; por eso no se produce ningún tipo de movimiento.
ESTADO GASEOSO
Se denomina gas al estado de agregación de la materia en el que las sustancias no tienen forma ni volumen propio, adoptando el de los recipientes que las contienen. Las moléculas que constituyen un gas casi no son atraídas unas por otras, por lo que se mueven en el vacío a gran velocidad y muy separadas unas de otras, explicando así las propiedades:
·         Las moléculas de un gas se encuentran prácticamente libres, de modo que son capaces de distribuirse por todo el espacio en el cual son contenidos. Las fuerzas gravitatorias y de atracción entre las moléculas son despreciables, en comparación con la velocidad a que se mueven las moléculas.
·         Los gases ocupan completamente el volumen del recipiente que los contiene.
·         Los gases no tienen forma definida, adoptando la de los recipientes que las contiene.
·         Pueden comprimirse fácilmente, debido a que existen enormes espacios vacíos entre unas moléculas y otras.





Fuerzas intermoleculares
Son más debiles que los enlaces y determinan las propiedades de las sustancias. Para el paso de un liquido a la fase de vapor se requiere superar estas fuerzas internas. Fuerzas intermoleculares atractivas:

Fuerzas dipolo-dipolo: atracción entre moléculas polares, aumenta al aumentar la polaridad de las moléculas. Su origen es electroestático gobernado por fuerzas coloumbicas.


- Fuerzas ion-dipolo: es la atracción entre un ión y el extremo de una molécula polar y depende del tamaño del ion y la magnitud del dipolo. Por ejemplo el proceso de hidratación es una interacción ion-dipolo donde los iones de sodio Na y cloro Cl, se rodean por moléculas de agua. 






- Puentes de hidrógeno: interacción dipolo-dipolo entre un átomo de hidrogeno y la región electronegativa de moléculas donde existen elementos con pares de electrones libres como el nitrógeno, el oxigeno o el flúor, generando atracciones excepcionalmente fuertes. La carga parcial positiva del hidrógeno se enlaza a la del elemento electronegativo formando puentes.
Fuerzas intermoleculares de dispersión:

- Fuerzas de london: fuerzas entre moléculas no polares, por momentos bipolares al moverse sus electrones en la molécula generando cargas electrónicas asimétricas, lo cual da como resultado un momento dipolar temporal que se llaman dipolos inducidos.

- Fuerzas de Van der Walls y Radio de Van der Walls: La fuerza dipolodipolo, dipolo-dipolo nducido y de dispersión se conocen como las fuerzas de Van der Walls, que son fuerzas de atracción y juegan un papel importante en las propiedades físicas de las sustancias y la distancia entre las moléculas esta determinada por una balance de cargas de atracción y de repulsión entre los electrones y los núcleos. El radio de van der Walls es la mitad de la distancia entre dos átomos no enlazados equivalente en su distribución más estable. La diferencia entre radio atómico y radio iónico y el radio de van der Walls es que esta ultimo se aplica a átomos no enlazados.